

loT 센서 데이터 자동 분석 소프트웨어 아키텍처

스마트 빌딩 적용 사례

Deokwoo Jung, PhD. SK 텔레콤 종합기술원

Data-Driven Energy Analytics (DDEA)

DATA DRIVEN ENERGY ANALYTICS Industry-Scale Demand-Response Resource Finder

WHAT DDEA IS AIMING

- Demand-Response Resource Finder
- Unsupervised-Learning with Sensor Data
- Industrial-Scale DR Service Provider (AaaS)

HOW DDEA WORKS

- Pre-processing Sensor & Environmental Data
- Data Summarization (Feature Extraction & Clustering)
- Model Discovery by Learning Algorithm

The Data-Driven Energy Analytics (DDEA) Scalable Energy Use Analysis Platform for Smart building

Project Goals

- Make DDEA scalable to >100x buildings :
 - data guery/loading/processing time optimization. Ο
- Make DDEA integratable to Internet of Things (IoT).
 - inter-operating with WSN, meta-data transformation, 0

Increase DDEA usability for Layman

- IFTTT style rule setting / checking/ searching/ event alarm. 0
- Intuituve Data Analysis Visualization

recegnition

The Data-Driven Energy Analytics (DDEA) Scalable Energy Use Analysis Platform for Smart building

• Data Management & Processing Methodology

- An approach to process BEMS Bigdata utilizing Open Source Python Scikit-Learn (<u>http://scikit-learn.org/</u>) and R bnlearn (<u>http://www.bnlearn.com/</u>).
- A strategy to locally save, to simplify, and to process data in parallel.
- A data model applicable to any type of BEMS and climate data.

• Data Modeling Methodology

- A mechanism for Automatic BEMS data pattern recognition.
- A topology for a data model without Naming Scheme information.
- A correlation model for BEMS data pattern, climate data, and time.

•Analysis Methodology based on BEMS Data Model

- Potential causation models among BEMS pattern, climate data, and time.
- Algorithms to automatically compute the weight of data points utilizing statistical causation model.
- Automatic computation and visualization methods for causation graph using Bayesian Network based on the weight of data points.

•Adaptive Operatiblity on Various Environment

- Ability to load sensor data from various data infrastructures.
- Operability on wide variety of hardwares and software environements.
- Web-based Frontend to support connectivity from mobile to desktop

DDEA Architecture

DDEA architecture : Current implementation

Data Preprocessing

• Data Retrieval and Standardization - Interpolation / Outlier detection

VTT Site: Large variations and correlated disruptions in sampling intervals among 5 sensors are observed

GSBC Site : Bad data acquisitions : E.g., Machine Room BMS Measurements of ['20020204', '20020205', '20020300', '20020301']

GSBC Site : Bad Outliers Power meter BMS data of ['30010017', '30040005', '30040009', '30040013', '30040019']

GSBC Site : Ambiguous Outliers Power meter BMS data of ['30040411', '30040415', '30040421', '30040501', '30040505']

Data Preprocessing

• Data Retrieval and Standardization - Interpolation / Outlier detection

13 sample data points retrieved from weather and BEMS database during 8 - 15 July, 2013

Data Summarization

• Data Transformation - Sensor measurement event classification

Proposed Signal Feature for Event Analysis	Regular Event (Average Value)	Irregular Event (Differential Value)
Data Characteristics	Periodically occurring measurement e.g., high and low peak in daily energy consumption	Non-Periodically occurring measurement . e.g., sudden drops in energy during daytime.
Time window	Set by users (default 15 min)	Set by users (default 15 min)
Data Feature	Extraction Average: Average value	Differential: Burstiness of Measurement Fluctuation
State Classification	Ternary States Low Peak, High Peak, and Non-Peak in hourly average of measurement	Binary States Regular or Irregular fluctuation in measurement differential.
Classification Method	K-Mean	K-Mean / GMM

Data Summarization

- Data Transformation Regular event classification
 - Automatically can transform all measurement data into hourly average and classify the hourly average into ternary states, 'Low-Peak, High-Peak, and No-Peak.
 - The regular event classification greatly simplifies temporal characteristics of measurement points that allows us to build tractable Bayesian Network for regular events.

Finland VTT 빌딩 적용 사례

Sampling density of VTT testbed in one week (1/11/2013 - 8/11/2013) analysis interval, t = 20 mins , x-axis: time index y-axis: sensor/data stream index the brighter the color, the higher density

(Aalysis of GW2.CG_SYSTEM_ACTIVE_POWER_M)

Solar systems

- ✓ Solar heat flat-plate collectors (collector area 16 m2 / estimated yearly heat production 575 kWh/ m2)
- ✓ PV-panels (panel area 35 m2 / peak power 5,2 kWp)

Figure 33. Module of 4 flat plate collectors of the solar heating system.

Analysis - VTT - Summary : Model Discovery (Aalysis of GW2.CG_SYSTEM_ACTIVE_POWER_M)

 Sensor-Time-Weather Causality Analysis
 Bayesian network structure that reveals the relationship between time, weather, and sensor measurements

- Peak Demand : 6,7,8 월에 UV Measurement 영향
- UV 값이 높을수록 (26 제외) Peak
 Demand의 확률이 높음

VAK1_CG_SYSTEM_REACTIVE_POWER_M- Irregular (Differential)

Heating networks (GSHP 128/AHU+floor 200/320 kW)

- ✓ AHU (Ground source heat pump, district heat, solar heating)
- ✓ Radiators (Ground source heat pump, district heat, solar heating)
- ✓ DHW (Ground source heat pump, district heat, solar heating, grey water heat recov)

VAK1_CG_SYSTEM_REACTIVE_POWER_M- Irregular (Differential)

(b) One-week profile (June 1-7, 2013)

VAK1_CG_SYSTEM_REACTIVE_POWER_M-Irregular (Differential)

(b) Differential Measurements during Aug 20-24, 2013

Distributed DDEA Work in Progress

CURRENT DDEA STACK

Analyzing sMAP on Spark : Work-in-progress

Dent Meter Reading : ~50GB BACnet Reading : ~200GB

x100 sMAP : 5~20TB

DISTRIBUTED DDEA

 Industry-Scale Time-Series Data Collection & Retrieval

Batch & Realtime Data
 Processing Capacity

• Horizontal Scalability over Cluster / Cloud

Centralized Data
 Collection & Processing

DDEA 의 타 vertical IoT 적용 - Industrial IoT -

반도체 공정 (FAB) 자동화 시스템 Overview

Discovering Hidden Factors is a key for success, yet challenging to automate it !!

Sources: Manufacturing Technology Center System Engineering PJT. [Kim.SH], SK Hynix, 2015.

YMS (Yield Management System)

반도체 제조 공정에서 발생하는 모든 Data를 수집하여 Data Warehouse를 구축하고 공정 이상 발생 모니터링 / 원인 분석 및 예방을 위한 분석 기능 제공

Sources: Manufacturing Technology Center System Engineering PJT. [Kim.SH], SK Hynix, 2015.

FDC (Fault Detection & Classification)

• 반도체 공정 Process 진행 중 설비에서 발생하는 미세 데이터의 수집/ 분류 / 분석 을 통한 설비 이상 유무 모니터링 및 진단

Sources: Manufacturing Technology Center System Engineering PJT. [Kim.SH], SK Hynix, 2015.

IIoT (Industrial IoT) /PdM(Predictive Maintenance) 솔루션

Same Framework

- Find Optimal Transform
- Exploit Data Sparsity
- Simplify your model.
- Robust Analysis

Vibration raw data - 37.5kHz

Discrete Cosine Transform- 37.5kHz

Automatic Feature Extraction - Reference

Frequency (Hz)

Automatic Feature Extraction - Unbalanced

Frequency (Hz)

Clustering for Reference & Unbalanced Fan

Questions ?