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7910
Exabytes
A Unstructured
Data Data (Video,
Volumes rich media etc)
Semi-Structured
(e.g. Weblogs,
- social media feeds)
Dataglp”
w o Structured
B%@ﬂnglex, (e.g. sensor,
1227 High Velocity & -
Wide Variety operational dat‘a,
Exabytes ; data warehousing
130 information)
Exabytes
2005 2010 2015 Time

Source : IDC Digital universe study(2011) Source : IDC (2012)

v" Digital Universe: the total amount of data stored v° Over 90% of data : Unstructured and semi-

in the world's computers structure data
v The rapid rate(over 45%) of data growth « Conventional data processing ?
v Problem of storage and processing speed, etc. v' The frequency of data generation and delivery

« Should be applied to data in motion
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“Big data technologies describe a new generation of technologies and architectures,
designed to economically extract value from very large volumes of a wide variety of data,
by enabling high-velocity capture, discovery, and/or analysis. “ — Definition of IDC

@ Oj|O|E{Q| C}=}
= H|™®4H 0|0|E{(Unstructured Data) X{2| Z
= A|AH GHE K&

Volume = AL2XL ol T2 MA U MZE2 N 2

[ )
@ 0|0 E{2| CH 223} (Beyond DBMS capacity)
& A|AERIO| 2% (Scalability)
-~ g ARE 7=

< Parallelism

o HIOIEQ] 1= XEl[EA)

= OJAF B £ T8, XA x[25}

= olHRE HEE U FHAREY 7|&
BIgData 3V < Stream processing
5 &N




Relational
databases

feEg
Unstructured @i

artifacts

Cleansing

Transformation
Integration
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Data extraction

Data Mining
Predictive
Analytics

Infrastructure
as a service

e i |MJ@_ML:
Structured =
Databases Exploration & Dashboards
Optimization Reports
Scheduling
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Machine Learning Data mining, Statistics, Visualization Lib

Text Mining
(Mahout) (R)

CEP
(Esper) Job Data Data Graph
Workflow Processing Processing Processing
Real-time stream Engine Framework Language (GETED

processing S/W (oozie) (MapReduce) (Pig, Hive) Giraph)
(Strom, S4)

(19daayj007)
jJuswabeuep) 193snpD

Web Crawler

(Nutch) NoSQL NewSQL
RDBMS Adapter RDBMS (Hbase, Redis, (voltDE) Search Store
(MySQL, MongoDB) .
(Sqoop) (ElasticSearch,
PostgresSQL) File S solr)
Collector 18 Sy

(Flume,Scribe,Chukwa) (HDFS)
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Flume, Scribe, Chukwa Collecting data from data source

MK

Co:l):cttaion sqoop Data delivery between HDFS and RDBMS
Nutch Web crawler
HDFS Distributed file system
Data Hbase, Redis, MongoDB  Key-value based data-base management system
Store voltDB RDBMS supporting scalability and ACID
Elastic search, Solr Search engine
---------------------------------‘
Real-time Storm, S4 Real-time distributed and parallel data processing |
. [ _§ N &N N &N BN N &N & B & &N §B & & & &8 & &8 &8 & &8 &8 & &8 _§8 & &8 &8 & §B § § |
Analytics Esper Processing stream data and providing high-level language
Oozie Workflow scheduler for Hadoop job
Batch MapReduce Batch distributed and parallel data processing
Analytics Pig, Hive Providing analytic operation and high-level language for big-data
Goraph, Hama Providing distributed and parallel programming model for big graph data
Mahout Machine learning
Mining L L
R Statistics, data mining, visualization library
Management zookeeper Distribution coordinator for Cluster management

8 &N
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Flow of concept in Big-Data analytics

= What happened ? = What will happen ? = \WWhat should I do ?
= What is happening ? = Why will it happen ? = Why should I do it ?

= Business reporting = Data mining = Optimization

= Dashboards = Text mining = Simulation
= Scoreboards = \Web/Media mining = Decision modeling
= Data warehousing = Forecasting = Export system

Iy Enables I:QuestionI

Accurate projections of Best possible business
future states and decisions and
conditions transactions

jOutcomes

Future
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Traditional Data Warehouse

- Complete record from transactional system

- All data centralized

- Analytics designed against stable environment

\ - Many reports run on a production basis /

~

/Big—data Analytic Environment

- Data from many sources inside and outside of organization
(including traditional DW)
- Data often physically distributed
- Need to iteration solution to test/improve models
- Large-memory analytics also part of iteration
\- Every iteration usually requires complete reload of information/

http.//wikibon.org/wiki/v/Enterprise_Big-data

11 Wﬁ



www.realtimetech.co.kr

HIGI0JE] 24 T2

a 2M 7|= M2 20} ( Potential Use cases )

Real time Credit & Market Risk in Banks

Fraud Detection (Credit Card) & Financial Crimes (AML) in Banks

(including Social Network Analysis

Event-based Marketing in Financial Services and Telecoms

Markdown Optimization in Retail

Claims and Tax Fraud in Public Sector

| .
Data = predictive ASocial Media
Velocity Ma;'\';tri';:giz o J Sentiment Analysis J

Disease Analysis
on Electronic Health
Records

1

Demand Forecasting
in Manufacturing

y

Video Surveillance/
Analysis

Traditional Data
Warehousing

Batch - 1

Structured Semi-structured Unstructured
Source : SAS & IDC

Text Mining

Data Variety

12 W‘
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0 Hadoop overview

v Google ZHE0| 2 &
/

oixl, Big data X%t

v’ Software platform that lets one easily write and run applications that
process vast amounts of data. It includes:

Pig: ==& 210 7|8t E&t HIO|E X5

— MapReduce - offline computing engine Mapkeduce: BLH SR AW '
— HDFS - Hadoop distributed file system | HBase: EAH [|O|Ef &2 ‘
— HBase (pre-alpha) — online data access

J

~

\f

HDFS: 24t Lt A2 H

LS S OV SN NS O B N

EEEEEEEE
v" Why Hadoop useful 2 EE E E E E E
3 NEET M| BRAAE §

— Scalable: It can reliably store and process petabytes.

— Economical: It distributes the data and processing across clusters of commonly
available computers (in thousands).

—  Efficient: By distributing the data, it can process it in parallel on the nodes where
the data is located.

— Reliable: It automatically maintains multiple copies of data and automatically
redeploys computing tasks based on failures.
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d HDFS

v" The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on
commodity hardware. It has many similarities with existing distributed file systems. However,
the differences from other distributed file systems are significant.

— highly fault-tolerant and is designed to be deployed on low-cost hardware.

— provides high throughput access to application data and is suitable for applications
that have large data sets.

— relaxes a few POSIX requirements to enable streaming access to file system data.

— part of the Apache Hadoop Core project.

Metadata (Name, replicas, ...):
Namenode /home/foo/data, 3, ...

Metadata ops ™

Block ops

Read Datanodes Datanodes

& O = = Replication = 8 %D
] O n Blocks
\

- \

Rack 1 Wite Rack 2

15 W‘



www.realtimetech.co.kr

HILJ|0|E{ HiX|(Batch) &M J|=

O MapReduce

v A programming model developed at Google v Key features for Hadoop ‘s success
v Sort/merge based distributed computing — partitioning of the input data
v Used extensively by more organizations — scheduling the program’s execution
(e.g., Yahoo, Amazon.com, IBM, etc.) across several machines
v It is functional style programming(e.g., LISP) — handling machine failures
parallelizable across a large cluster of — managing required inter-machine
workstations or PCs. communication.
T W — get new job id " ). JOBTRACKER NODE
| I I initialize job
submit job
CLIENT JVM
copy job rieve heart beat heart beal heart beat
resources job splits returns task) returns task) returns task)
Sk G r
resources launch aunc
CHILD JVM CHILD JVvM
CHILD CHILD
) 'run N run
MAP TASK MAP TASK
OR OR
REDUCE REDUCE

TASK TASK

16 &
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| Working model for 1. Push unstru data into HDFS

offline-batched analytics

2. Periodically
schedule Map- 3. pull Other
_Reduce Jobto . - Map-Reduce ‘ Data
process new HDFS other
contents sources Sources

4. Finish Execution. Produce
insights and/o n re structured
output to other stores (e.g. HBase,
RBMS) for Iz
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O Example applications of Hadoop

«  A9.com—Amazon: To build Amazon's product search indices; process millions of sessions daily for analytics, using
both the Java and streaming APIs; clusters vary from 1 to 100 nodes.

*  Yahoo! : More than 100,000 CPUs in ~20,000 computers running Hadoop; biggest cluster: 2000 nodes (2*4cpu
boxes with 4TB disk each); used to support research for Ad Systems and Web Search

« AOL : Used for a variety of things ranging from statistics generation to running advanced algorithms for doing
behavioral analysis and targeting; cluster size is 50 machines, Intel Xeon, dual processors, dual core, each with
16GB Ram and 800 GB hard-disk giving us a total of 37 TB HDFS capacity.

»  Facebook: To store copies of internal log and dimension data sources and use it as a source for reporting/analytics
and machine learning; 320 machine cluster with 2,560 cores and about 1.3 PB raw storage;

«  FOXInteractive Media : 3 X 20 machine cluster (8 cores/machine, 2TB/machine storage) ; 10 machine cluster (8
cores/machine, 1TB/machine storage); Used for log analysis, data mining and machine learning

. University of Nebraska Lincoln: one medium-sized Hadoop cluster (200TB) to store and serve physics data;

«  Adknowledge - to build the recommender system for behavioral targeting, plus other clickstream analytics; clusters
vary from 50 to 200 nodes, mostly on EC2.

«  Contextweb - to store ad serving log and use it as a source for Ad optimizations/ Analytics/reporting/machine
learning; 23 machine cluster with 184 cores and about 35TB raw storage. Each (commaodity) node has 8 cores, 8GB
RAM and 1.7 TB of storage.

«  Cornell University Web Lab: Generating web graphs on 100 nodes (dual 2.4GHz Xeon Processor, 2 GB RAM,
72GB Hard Drive)

*  NetSeer - Up to 1000 instances on Amazon EC2 ; Data storage in Amazon S3; Used for crawling, processing,
serving and log analysis

The New York Times : Large scale image conversions ; EC2 to run Hadoop on a large virtual cluster

«  Powerset / Microsoft - Natural Language Search; up to 400 instances on Amazon EC2 ; data storage in Amazon 33
18 %e
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http://a9.com/
http://www.yahoo.com/
http://aol.com/
http://www.facebook.com/
http://www.newscorp.com/management/fim.html
http://adknowledge.com/
http://www.contextweb.com/
http://www.weblab.infosci.cornell.edu/
http://www.netseer.com/
http://www.amazon.com/b/ref=sc_fe_l_2/002-1156069-5604805?ie=UTF8&node=201590011&no=3435361&me=A36L942TSJ2AJA
http://www.amazon.com/S3-AWS-home-page-Money/b/ref=sc_fe_l_2/002-1156069-5604805?ie=UTF8&node=16427261&no=3435361&me=A36L942TSJ2AJA
http://nytimes.com/
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
http://www.powerset.com/
http://www.powerset.com/
http://www.powerset.com/
http://www.amazon.com/b/ref=sc_fe_l_2/002-1156069-5604805?ie=UTF8&node=201590011&no=3435361&me=A36L942TSJ2AJA
http://www.amazon.com/S3-AWS-home-page-Money/b/ref=sc_fe_l_2/002-1156069-5604805?ie=UTF8&node=16427261&no=3435361&me=A36L942TSJ2AJA
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0 Concept of stream processing

v’ Stream : Unbounded sequence of data
v" Processing of data-in-motion

v" Finite window data processing

v Continuous query processing

F e Stream Processing Application
Real-time . = Alerts
Feeds """ % E g > Actions

.l.l.l..l.l'>

”r

.
> v

ssssssnnnz)p

Memory
OO O O O CO COOWl OO OO O O O o O OO Cco a da
Disk \

. Optional Storage
and Queries

Source : EMC Blog posted by William Zhou Sep 2012

20 &



www.realtimetech.co.kr

SOI0lE] &AIZE =4 J|=

O Storm - overview

v Developed by BackType which was acquired by Twitter
v' Lots of tools for data (i.e. batch) processing
— Hadoop, Pig, HBase, Hive, ...
— None of them are real-time systems which is becoming a real requirement for

businesses
P Storm provides |
roblems of MR CWhat we want D I-time computaﬂD
= Guaranteed data
processing = Scalable
= Horizontal scalability = Guarantees no data loss
= Scaling is painful = Fault-tolerance = Extremely robust and
= Poor fault-tolerance = No intermediate fault-tolerant
= Coding is tedious message brokers! = Programming language
» Higher level abstraction agnostic
than message passing
= “Just works” !! D

21 W‘
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O Storm - architecture & stream processing model

Master node (similar to Supervisor
Hadoop JobTracker)
> Storm cluster
\ Zookeeper Supervisor
Distributed architecture as Master/Slave
— Nimbus : code distribution, task - —
. o Supervisor
deployment, fault monitoring ~
— Supervisor : processing task control —
— Zookeeper : cluster management

/ Supervisor

Used for cluster coordination \/ \

» Stream Processing model
Run worker processes

Spouts Bolts Topology

/O\
O ==l = o/e

—@
Network of spouts and bolts

22 Wﬁ

\o et
Tuple Tuple Ny i
! S

Tuple 7‘77,,—""7

Tuple Tuple | Ty
ple | | Tuple T I
Pl | | Tuple Tuple
Processes input streams and produces new streams:

Can implement functions such as filters, aggregation, join, etc

Source of streams
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O Storm - stream grouping

» When a tuple is emitted which task does it go to ?

« Shuffle grouping
pick a random task bota_ Shuffle poit boitA Al potB

O O
o O

« Fields grouping
consistent hashing on a subset of

tuple fields
Fields
. bolt A bolt B Global
« All grouping olt | olt bolt A bolt B
O field X
send to all tasks O

| Or
O field Y O—

« Global grouping
pick task with lowest id

23 &
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O Storm - Processing example(word count)

TopologyBuilder builder = new TopologyBuilder(); 1. TopologyBuilder is used to construc
topologiesin Java
builder.setSpout(“spout”, new KestrelSpout( 2. Define a spoutin the topology with
“kestrel.twitter.com”, 22133, “sentence_queue”), 5); parallelism of 5 tasks
builder.setBolt(“split”, new SplitSentence(), 8) 3. Split sentences into words with
.shuffleGrouping(“spout’’); parallelism of 8 tasks

Consumer decides what data it receives and how it gets grouped

builder.setBolt(“count”, new WordCount(), 12) 3. Create a word count stream
JfieldsGrouping(“split”, new Fields(“word”));

=—@—@

Kestrel spout split count
(Open Source Message Queue) (KestrelSpout.java) (SplitSentence.java) (WordCount.java)
at kestrel.twitter.com:22133 with 5 tasks with 8 tasks with 12 tasks

[sentence queue

=) =)
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0 S4 - Overview

S distributed stream

computing platform ( Simple Scalable Streaming System )

“S4 is a general-purpose, distributed, scalable, fault-tolerant, pluggable
platform that allows programmers to easily develop applications for
processing continuous unbounded streams of data”

v Released by Yahoo! in October 2010
v" An Apache Incubator project since September 2011
v Under the Apache 2.0 license

Proven Decentralized Scalable
Deployed in production systems| | All nodes are symmetric with ng | Throughput increases linearly as
at Ypah)éo! to Brocess thou)s/ands centralized service and no additional nodes are added to the
of search queries per second single point of failure. cluster.

Extensible Cluster management Fault-tolerance
Applications can easily be Using a communication layer When a server in the cluster
written and deployed using a built on top of ZooKeeper fails, a stand-by server is
simple API. autor]gﬁtlgzalil(y activated to take

over the tasks.

25 W‘
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O S4 - Architecture

) c - PE H PE
Node erver PP Prototype Instance
I ! I I
Streams |||
1

PE instances are

Unlimited number
of nodes

Each node has one
process

One server process
per node

Loads/unloads
apps

Encapsulate units
of work

Can consume and
produce event
streams

An app is a graph
composed of PE
prototypes and

streams that produce,

consume, and
transmit msgs

clones of the PE
prototype

Associated with a
unique key and
contain the state

v S4 is logically a message passing system
— computational units, called Processing Elements (PEs), send and receive messages
(called Events)

— S4 framework defines an API which every PE must implement, and provides
facilities instantiating PEs and for transporting Events

26 &
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O S4 - Stream processing model

Processing Node

Ext I PEC(Processing Element Container)

xterna O

Data I:> O I:> Adapter \ Processmg } { Processing }[ Processing }
ts

Element Element Element
Sources Convert to Even A
J
Data Stream
Input , Output
L Event " Event )

v Stream : a sequence of “Events”
v Events
— Arbitrary Java Objects that can be passed between PEs of the form (K, A)
K : keyed attribute/value A : other attributes
— Adapters convert external data sources into Events that S4 can process
— Attributes of events can be accessed via getters in PEs [ .
— Events are dispatched in named streams |

public class Person {
String name = “Lee”’;
int age = 30;
String addr =
“Daejeon”’;

27 U &
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O S4 - Stream processing model

v PE(Processing Element)

— Basic computational units in S4

— Consume events and can in turn emit new events and update their state

— Each instance of a PE is uniquely identified by four components:
* its functionality as defined by a PE class and associated configuration,
« the named stream that it consumes,
* the keyed attribute in those events, and
* the value of the keyed attribute in events which it consumes

— Every PE consumes exactly those events which correspond to the value on which
it is keyed

— A PE is instantiated for each value of the key attribute

— This instantiation is performed by the platform

public class Person {e————— Type of event = named stream
String name; e > Keyed attribute
int age; ]
String addr; |

» Other attribute

}

28 &
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O S4 - Stream processing model

v Processmg Node (PN)
Logical hosts to PEs
— Responsible for listening to events, executing operations on the incoming
events, dispatching events with the assistance of the communication layer, and
emitting output events
— S4 : route each event to PNs based on a hash function of the values of all
known keyed attributes in that event
— Event Listener : pass incoming events to the PEC
— PEC : invoke the appropriate PEs in the appropriate order
— Every keyless PE is instantiated once per PN
— Only one PE prototype exists in a PN

v" PE Container (PEC)
— Holds all PE instances, including the PE prototypes
— Responsible for routing incoming events to the appropriate PE instances

29 &
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- A keyless event (EV) arrives at PE1 with quote:
m wQuote . ] meant what | said and | said what | meant.", Dr. Seuss
‘/ S Wi i id w ", Dr. Seu
WO rd Count €xa ple KEY_ sulill] s QuoteSplitterPE (PE1) counts unique

~~~~~~~~~~~ words in Quote and emits events for

each word. _
' EV _ WordEvent
EV _WordEvent < KEY _word="i"
KEY ="said" - VAL _count=4

WordCountPE (PE2-4)
keeps total counts for
each word across all

quotes. Emits an event

— iR any time a count is
KEY _sortlD=2 . updated.
VAL _ word=said count=9
EV ntEv

SortPE (PE5-7)
continuously sorts partial
lists. Emits lists at periodic
intervals

" KEY _ sortID=9
VAL word="i" count=35

EV PartialTopKEv '
KEY _ topk=1234

MergePE (PE8) combines partial
TopK lists and outputs final

VAL words={w:cnt} TopK list.
PEID PE Name Key Tuple
PE1L QuoteSplitterPE null
PE2 WordCountPE  word="said"
PE4 WordCountPE  word="i"
___SortPE sortiD=2
SortPE sortiD=9
~ MergePE topK=1234

30 &
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O Twitter Strom vs Yahoo! S4

license
A2”

o2 Ko 2

801
Window
AEY MY

EHA3 =& HHXI

oy AEE ZHl

S0H A

Eclipse Public License
Master/Slave

==
T
EHAZE A DAG
Bolt

ZeroMQ

MasterOfiA] 2H

Shuffle, field, all, global,

direct

EHA 3 THUHX] & Al
Guaranteed message
processing

31

= A

i =1

=

Apache 2.0
Symmetric

(Keys, attribute) &=
O|HIE J|4t Actor

Processing Element

Transport Protocol
pluggable

71 aX0fl 2ol 23
OI#1E type & key

EHA3 THHH K] & &%
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®In-Memory computing for Big data
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( ETRI, 2012.6 ~ 2017.5)
TIL - iz — AL
® = :YOojy HAIZE M, g2] & 2M SeHE Y 7= /Y
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c =4 23
210j|O|E{ &I A|ZF Business Intelligence X[ SW HAEHE D=
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SIHIO[E] A |ZF X I="E1I°IE1 P e =
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SRR |

OLAP/OLTP8-2| DRAM/NVRAM Z-§ 7|Et DBMS

J L
<+ ETL: Extract, Transform, Load
+» NVRAM : Non Volatile RAM
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In-Memory computing for Big Data

exPec‘taf_‘:;ggl Data Document Store Database Management Systems
Warehouse Complex-Event Processing
Internet of Things Context-Enriched Services

Content Analytics
Dynamic Data Masking
Key-Value Database Management Systems

Cloud-Based Grid Computing
In-Memory Database Management Systems}

Hadoop SQL Interfaces

Video Search

Information Semantic Services

Information Capabilities Framework
Table-Style Database Management Services
Intent-Driven Customer Systems
Search-Based Data Discovery Tools

Data Science

High-Performance M?ssage Infrastructure

Big Data Analytics for E-Commerce

Social Analytics

Entity Resolution and Analysis
Saleg Analytics 4 Predictive Analytics

Telematics
Hadoop Distributions
In-Memory Data Grids ]

Cloud Parallel Processing

Speech Recognition

Graph Databases ]
Social Media Monitors

Database Software
as a Service
(dbSaaS)

Quantified Self Cloud Computing Intelligent Electronic Devices
Operational Intelligence Platforms
Information Valuation and

Infonomics

In-Memory Analytics]
Text Analytics

Big Data Analytics for Customer Service

As of July 2013
Innovation ::ﬁ?aﬁ:; Trough of sl f Enlight t Plateau of
Trigger Expectations Disillusionment ope ot Enflightenmen Productivity
time <
Plateau will be reached in:
obsolete

Olessthan2years O 2to5years @ 5to10years A more than 10 years ® before plateau

Source: Gartner (July 2013)

[ Hype Cycle for Big Data ]
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Service Gateway
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| WebGIS Server | m 8CPU x Quad core, 256GB
Web S m DB : 100GB ( 2012911 )
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